Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Commun ; 14(1): 2916, 2023 05 24.
Article in English | MEDLINE | ID: covidwho-20241764

ABSTRACT

The association between long-term exposure to ambient air pollutants and severe COVID-19 is uncertain. We followed 4,660,502 adults from the general population in 2020 in Catalonia, Spain. Cox proportional models were fit to evaluate the association between annual averages of PM2.5, NO2, BC, and O3 at each participant's residential address and severe COVID-19. Higher exposure to PM2.5, NO2, and BC was associated with an increased risk of COVID-19 hospitalization, ICU admission, death, and hospital length of stay. An increase of 3.2 µg/m3 of PM2.5 was associated with a 19% (95% CI, 16-21) increase in hospitalizations. An increase of 16.1 µg/m3 of NO2 was associated with a 42% (95% CI, 30-55) increase in ICU admissions. An increase of 0.7 µg/m3 of BC was associated with a 6% (95% CI, 0-13) increase in deaths. O3 was positively associated with severe outcomes when adjusted by NO2. Our study contributes robust evidence that long-term exposure to air pollutants is associated with severe COVID-19.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Adult , Humans , Spain/epidemiology , Cohort Studies , Nitrogen Dioxide/toxicity , COVID-19/epidemiology , Air Pollution/adverse effects , Air Pollutants/adverse effects , Particulate Matter/adverse effects
2.
Sci Rep ; 13(1): 3862, 2023 03 08.
Article in English | MEDLINE | ID: covidwho-2278257

ABSTRACT

The characterization of the antibody response to SARS-CoV-2 and its determinants are key for the understanding of COVID-19. The identification of vulnerable populations to the infection and to its socioeconomic impact is indispensable for inclusive policies. We conducted an age-stratified cross-sectional community-based seroprevalence survey between June 12th and 19th 2020-during the easing of lockdown-in Cizur, Spain. We quantified IgG, IgM and IgA levels against SARS-CoV-2 spike and its receptor-binding domain in a sample of 728 randomly selected, voluntarily registered inhabitants. We estimated a 7.9% seroprevalence in the general population, with the lowest seroprevalence among children under ten (n = 3/142, 2.1%) and the highest among adolescents (11-20 years old, n = 18/159, 11.3%). We found a heterogeneous immune-response profile across participants regarding isotype/antigen-specific seropositivity, although levels generally correlated. Those with technical education level were the most financially affected. Fifty-five percent had visited a supermarket and 43% a sanitary centre since mid-February 2020. When comparing by gender, men had left the household more frequently. In conclusion, few days after strict lockdown, the burden of SARS-CoV-2 infection was the lowest in children under 10. The findings also suggest that a wider isotype-antigen panel confers higher sensitivity. Finally, the economic impact biases should be considered when designing public health measures.


Subject(s)
COVID-19 , Adolescent , Child , Male , Humans , Young Adult , Adult , COVID-19/epidemiology , SARS-CoV-2 , Spain/epidemiology , Cross-Sectional Studies , Seroepidemiologic Studies , Communicable Disease Control , Educational Status , Immunoglobulin Isotypes , Antibodies, Viral
3.
ERJ Open Res ; 8(2)2022 Apr.
Article in English | MEDLINE | ID: covidwho-1866272

ABSTRACT

Research question: Can smartphones be used to detect individual and population-level changes in cough frequency that correlate with the incidence of coronavirus disease 2019 (COVID-19) and other respiratory infections? Methods: This was a prospective cohort study carried out in Pamplona (Spain) between 2020 and 2021 using artificial intelligence cough detection software. Changes in cough frequency around the time of medical consultation were evaluated using a randomisation routine; significance was tested by comparing the distribution of cough frequencies to that obtained from a model of no difference. The correlation between changes of cough frequency and COVID-19 incidence was studied using an autoregressive moving average analysis, and its strength determined by calculating its autocorrelation function (ACF). Predictors for the regular use of the system were studied using a linear regression. Overall user experience was evaluated using a satisfaction questionnaire and through focused group discussions. Results: We followed-up 616 participants and collected >62 000 coughs. Coughs per hour surged around the time cohort subjects sought medical care (difference +0.77 coughs·h-1; p=0.00001). There was a weak temporal correlation between aggregated coughs and the incidence of COVID-19 in the local population (ACF 0.43). Technical issues affected uptake and regular use of the system. Interpretation: Artificial intelligence systems can detect changes in cough frequency that temporarily correlate with the onset of clinical disease at the individual level. A clearer correlation with population-level COVID-19 incidence, or other respiratory conditions, could be achieved with better penetration and compliance with cough monitoring.

4.
Frontiers in pharmacology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1695388

ABSTRACT

As of October 2021, neither established agents (e.g., hydroxychloroquine) nor experimental drugs have lived up to their initial promise as antiviral treatment against SARS-CoV-2 infection. While vaccines are being globally deployed, variants of concern (VOCs) are emerging with the potential for vaccine escape. VOCs are characterized by a higher within-host transmissibility, and this may alter their susceptibility to antiviral treatment. Here we describe a model to understand the effect of changes in within-host reproduction number R0, as proxy for transmissibility, of VOCs on the effectiveness of antiviral therapy with molnupiravir through modeling and simulation. Molnupiravir (EIDD-2801 or MK 4482) is an orally bioavailable antiviral drug inhibiting viral replication through lethal mutagenesis, ultimately leading to viral extinction. We simulated 800 mg molnupiravir treatment every 12 h for 5 days, with treatment initiated at different time points before and after infection. Modeled viral mutations range from 1.25 to 2-fold greater transmissibility than wild type, but also include putative co-adapted variants with lower transmissibility (0.75-fold). Antiviral efficacy was correlated with R0, making highly transmissible VOCs more sensitive to antiviral therapy. Total viral load was reduced by up to 70% in highly transmissible variants compared to 30% in wild type if treatment was started in the first 1–3 days post inoculation. Less transmissible variants appear less susceptible. Our findings suggest there may be a role for pre- or post-exposure prophylactic antiviral treatment in areas with presence of highly transmissible SARS-CoV-2 variants. Furthermore, clinical trials with borderline efficacious results should consider identifying VOCs and examine their impact in post-hoc analysis.

5.
BMJ Glob Health ; 6(11)2021 11.
Article in English | MEDLINE | ID: covidwho-1515291

ABSTRACT

INTRODUCTION: The global progress against malaria has slowed significantly since 2017. As the current malaria control tools seem insufficient to get the trend back on track, several clinical trials are investigating ivermectin mass drug administration (iMDA) as a potential additional vector control tool; however, the health impacts and cost-effectiveness of this new strategy remain unclear. METHODS: We developed an analytical tool based on a full factorial experimental design to assess the potential impact of iMDA in nine high burden sub-Saharan African countries. The simulated iMDA regimen was assumed to be delivered monthly to the targeted population for 3 months each year from 2023 to 2027. A broad set of parameters of ivermectin efficacy, uptake levels and global intervention scenarios were used to predict averted malaria cases and deaths. We then explored the potential averted treatment costs, expected implementation costs and cost-effectiveness ratios under different scenarios. RESULTS: In the scenario where coverage of malaria interventions was maintained at 2018 levels, we found that iMDA in these nine countries has the potential to reverse the predicted growth of malaria burden by averting 20-50 million cases and 36 000-90 000 deaths with an assumed efficacy of 20%. If iMDA has an efficacy of 40%, we predict between 40-99 million cases and 73 000-179 000 deaths will be averted with an estimated net cost per case averted between US$2 and US$7, and net cost per death averted between US$1460 and US$4374. CONCLUSION: This study measures the potential of iMDA to reverse the increasing number of malaria cases for several sub-Saharan African countries. With additional efficacy information from ongoing clinical trials and country-level modifications, our analytical tool can help determine the appropriate uptake strategies of iMDA by calculating potential marginal gains and costs under different scenarios.


Subject(s)
Malaria , Mass Drug Administration , Cost-Benefit Analysis , Humans , Ivermectin/therapeutic use , Malaria/drug therapy , Malaria/epidemiology
6.
Signal Transduct Target Ther ; 6(1): 164, 2021 04 24.
Article in English | MEDLINE | ID: covidwho-1387222
7.
Trials ; 22(1): 262, 2021 Apr 09.
Article in English | MEDLINE | ID: covidwho-1175342

ABSTRACT

OBJECTIVES: The primary objective is to determine the effect of a daily dose of ivermectin administered in three consecutive days to non-severe COVID-19 patients with no more than 96 hours of symptoms, on the detection of SARS-CoV-2 RNA by PCR from nasopharyngeal swabs at day seven post-treatment initiation. The secondary objectives are: 1. To assess the efficacy of ivermectin to reduce the SARS-CoV-2 viral load in the nasopharyngeal swab on days 4, 7, 14 and 21 post-treatment initiation 2. To assess the efficacy of ivermectin on the improvement of symptoms 3. To assess the proportion of seroconversions at day 21 4. To assess the safety of ivermectin at the proposed dose 5. To determine the magnitude of the immune response against SARS-CoV-2 6. To assess correlation of the presence of intestinal helminths on participants on baseline and day 14 with COVID-19 progression and treatment. TRIAL DESIGN: SAINT PERU is a triple-blinded, randomized, placebo-controlled trial with two parallel arms to evaluate the efficacy of ivermectin in negativizing nasopharyngeal PCR in patients with SARS-CoV-2 infection. PARTICIPANTS: The trial is conducted in two national hospitals in Lima-Peru. The study population is patients with a positive PCR test for SARS-CoV-2 in a nasopharyngeal specimen, symptomatic for 96 hours or less, with non-severe COVID-19 disease at baseline, regardless of the presence of risk factors for progression to severity. The study will not include pregnant women or minors (17 years old or younger). Inclusion criteria 1. COVID-19 symptomatology (cough, fever, anosmia, etc.) lasting no more than 96 hours, with a positive nasopharyngeal swab PCR test for SARS-CoV-2. 2. 18 years or older. 3. No use of ivermectin in the month prior to the visit. 4. No known history of ivermectin allergy. 5. Capable to give informed consent. 6. Not current use of CYP 3A4 or P-gp inhibitor drugs such as quinidine, amiodarone, diltiazem, spironolactone, verapamil, clarithromycin, erythromycin, itraconazole, ketoconazole, cyclosporine, tacrolimus, indinavir, ritonavir, cobicistat or critical CYP3A4 substrate drugs such as warfarin. Exclusion criteria 1. COVID-19 pneumonia diagnosed by the attending physician (oxygen saturation < 95% or lung examination) 2. Positive pregnancy test for women at childbearing age. 3. Positive IgG against SARS-CoV-2 by rapid diagnostic test at screening. Participants will be recruited by the investigators at the emergency services of the study sites. They are expected to remain in the trial for a period of 21 days. Follow-up visits will be conducted by the trial medical staff at the participant's home or at a hospital in case of hospitalization. Follow-up visits will assess clinical and laboratory parameters of the patients. INTERVENTION AND COMPARATOR: Ivermectin (300 mcg/kg) or placebo will be administered in one daily dose for three consecutive days. Currently, there is no solid data on the efficacy of ivermectin against the virus in vivo; therefore the use of placebo in the control group is ethically justified. MAIN OUTCOMES: Primary Proportion of patients with a positive SARS-CoV-2 PCR from a nasopharyngeal swab at day 7 post-treatment. Secondary 1. Mean viral load as determined by PCR cycle threshold (Ct) on days 4, 7, 14, and 21 2. Proportion of patients with fever and cough at days 4, 7, 14, and 21 as well as proportion of patients progressing to severe disease or death during the trial 2. Proportion of patients with a positive rapid diagnostic test at day 21 3. Proportion of drug-related adverse events during the trial 4. Median levels of IgG, IgM, IgA measured by Luminex RANDOMIZATION: Participants will be randomized to receive one dose of 300 mcg/kg ivermectin or placebo daily for three consecutive days. The epidemiologist will generate a list of correlative numbers, in randomized blocks of size 4, with the assignment to the treatment groups (a and b). The randomization list will be kept in an encrypted file accessible only to the trial statistician. This list will be handed directly to the pharmacist. Independently, the principal investigator will randomly assign the intervention (ivermectin) to one of the two groups (a or b) by tossing a coin, and will inform the pharmacist of the result of this process. The pharmacist will prepare and label the treatment vials according to the randomization list prepared by the epidemiologist and the treatment assignment given by the principal investigator. Eligible patients will be allocated in a 1:1 ratio using this randomization list. BLINDING (MASKING): The clinical trial team, the statistician, and the patients will be blinded as to arm allocation. The vials with placebo will be visibly identical to the ones with the active drug. Treatment will be administered by staff not involved in the clinical care or participant's follow up. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE): The planned sample size is 186 SARS-CoV-2 PCR positive patients: 93 patients to treatment and 93 to the placebo group. TRIAL STATUS: Current protocol version: 2.0 dated January 15th, 2021. Recruitment started on Aug 29th, 2020. Recruitment is expected to be completed April 30th 2021. TRIAL REGISTRATION: "Ensayo Clínico aleatorizado de Fase IIa para comparar la efectividad de la ivermectina versus placebo en la negativización del PCR en pacientes en fase temprana de COVID-19" Peru National Health Institute REPEC with number: PER-034-20 , registered July 17th 2020 (National Peruvian Registration before the first participant enrolled). "Randomized Phase IIA Clinical Trial to Evaluate the Efficacy of Ivermectin to Obtain Negative PCR Results in Patients With Early Phase COVID-19" Clinicaltrials.gov: NCT04635943 , retrospectively registered in November 19th 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Nucleic Acid Testing , COVID-19/diagnosis , Ivermectin/therapeutic use , Humans , Multicenter Studies as Topic , Nasopharynx/virology , Peru , Polymerase Chain Reaction , RNA, Viral/isolation & purification , Randomized Controlled Trials as Topic , Treatment Outcome
8.
Front Pharmacol ; 12: 625678, 2021.
Article in English | MEDLINE | ID: covidwho-1156139

ABSTRACT

Several repurposed drugs are currently under investigation in the fight against coronavirus disease 2019 (COVID-19). Candidates are often selected solely by their effective concentrations in vitro, an approach that has largely not lived up to expectations in COVID-19. Cell lines used in in vitro experiments are not necessarily representative of lung tissue. Yet, even if the proposed mode of action is indeed true, viral dynamics in vivo, host response, and concentration-time profiles must also be considered. Here we address the latter issue and describe a model of human SARS-CoV-2 viral kinetics with acquired immune response to investigate the dynamic impact of timing and dosing regimens of hydroxychloroquine, lopinavir/ritonavir, ivermectin, artemisinin, and nitazoxanide. We observed greatest benefits when treatments were given immediately at the time of diagnosis. Even interventions with minor antiviral effect may reduce host exposure if timed correctly. Ivermectin seems to be at least partially effective: given on positivity, peak viral load dropped by 0.3-0.6 log units and exposure by 8.8-22.3%. The other drugs had little to no appreciable effect. Given how well previous clinical trial results for hydroxychloroquine and lopinavir/ritonavir are explained by the models presented here, similar strategies should be considered in future drug candidate prioritization efforts.

9.
EClinicalMedicine ; 32: 100720, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1036790

ABSTRACT

BACKGROUND: Ivermectin inhibits the replication of SARS-CoV-2 in vitro at concentrations not readily achievable with currently approved doses. There is limited evidence to support its clinical use in COVID-19 patients. We conducted a Pilot, randomized, double-blind, placebo-controlled trial to evaluate the efficacy of a single dose of ivermectin reduce the transmission of SARS-CoV-2 when administered early after disease onset. METHODS: Consecutive patients with non-severe COVID-19 and no risk factors for complicated disease attending the emergency room of the Clínica Universidad de Navarra between July 31, 2020 and September 11, 2020 were enrolled. All enrollments occurred within 72 h of onset of fever or cough. Patients were randomized 1:1 to receive ivermectin, 400 mcg/kg, single dose (n = 12) or placebo (n = 12). The primary outcome measure was the proportion of patients with detectable SARS-CoV-2 RNA by PCR from nasopharyngeal swab at day 7 post-treatment. The primary outcome was supported by determination of the viral load and infectivity of each sample. The differences between ivermectin and placebo were calculated using Fisher's exact test and presented as a relative risk ratio. This study is registered at ClinicalTrials.gov: NCT04390022. FINDINGS: All patients recruited completed the trial (median age, 26 [IQR 19-36 in the ivermectin and 21-44 in the controls] years; 12 [50%] women; 100% had symptoms at recruitment, 70% reported headache, 62% reported fever, 50% reported general malaise and 25% reported cough). At day 7, there was no difference in the proportion of PCR positive patients (RR 0·92, 95% CI: 0·77-1·09, p = 1·0). The ivermectin group had non-statistically significant lower viral loads at day 4 (p = 0·24 for gene E; p = 0·18 for gene N) and day 7 (p = 0·16 for gene E; p = 0·18 for gene N) post treatment as well as lower IgG titers at day 21 post treatment (p = 0·24). Patients in the ivermectin group recovered earlier from hyposmia/anosmia (76 vs 158 patient-days; p < 0.001). INTERPRETATION: Among patients with non-severe COVID-19 and no risk factors for severe disease receiving a single 400 mcg/kg dose of ivermectin within 72 h of fever or cough onset there was no difference in the proportion of PCR positives. There was however a marked reduction of self-reported anosmia/hyposmia, a reduction of cough and a tendency to lower viral loads and lower IgG titers which warrants assessment in larger trials. FUNDING: ISGlobal, Barcelona Institute for Global Health and Clínica Universidad de Navarra.

10.
Sci Rep ; 10(1): 17073, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-867592

ABSTRACT

Ivermectin is a widely used antiparasitic drug with known efficacy against several single-strain RNA viruses. Recent data shows significant reduction of SARS-CoV-2 replication in vitro by ivermectin concentrations not achievable with safe doses orally. Inhaled therapy has been used with success for other antiparasitics. An ethanol-based ivermectin formulation was administered once to 14 rats using a nebulizer capable of delivering particles with alveolar deposition. Rats were randomly assigned into three target dosing groups, lower dose (80-90 mg/kg), higher dose (110-140 mg/kg) or ethanol vehicle only. A toxicology profile including behavioral and weight monitoring, full blood count, biochemistry, necropsy and histological examination of the lungs was conducted. The pharmacokinetic profile of ivermectin in plasma and lungs was determined in all animals. There were no relevant changes in behavior or body weight. There was a delayed elevation in muscle enzymes compatible with rhabdomyolysis, that was also seen in the control group and has been attributed to the ethanol dose which was up to 11 g/kg in some animals. There were no histological anomalies in the lungs of any rat. Male animals received a higher ivermectin dose adjusted by adipose weight and reached higher plasma concentrations than females in the same dosing group (mean Cmax 86.2 ng/ml vs. 26.2 ng/ml in the lower dose group and 152 ng/ml vs. 51.8 ng/ml in the higher dose group). All subjects had detectable ivermectin concentrations in the lungs at seven days post intervention, up to 524.3 ng/g for high-dose male and 27.3 ng/g for low-dose females. nebulized ivermectin can reach pharmacodynamic concentrations in the lung tissue of rats, additional experiments are required to assess the safety of this formulation in larger animals.


Subject(s)
Antiparasitic Agents/therapeutic use , Coronavirus Infections/drug therapy , Ivermectin/therapeutic use , Pneumonia, Viral/drug therapy , Administration, Inhalation , Animals , Antiparasitic Agents/pharmacokinetics , Antiparasitic Agents/pharmacology , Behavior, Animal/drug effects , COVID-19 , Coronavirus Infections/pathology , Dose-Response Relationship, Drug , Female , Half-Life , Ivermectin/pharmacokinetics , Ivermectin/pharmacology , Lung/metabolism , Lung/pathology , Male , Necrosis , Pandemics , Pneumonia, Viral/pathology , Proof of Concept Study , Rats , Rats, Sprague-Dawley , Respiration Disorders/drug therapy , Respiration Disorders/pathology
11.
Trials ; 21(1): 498, 2020 Jun 08.
Article in English | MEDLINE | ID: covidwho-591348

ABSTRACT

OBJECTIVES: The primary objective is to determine the efficacy of a single dose of ivermectin, administered to low risk, non-severe COVID-19 patients in the first 48 hours after symptom onset to reduce the proportion of patients with detectable SARS-CoV-2 RNA by Polymerase Chain Reaction (PCR) test from nasopharyngeal swab at day 7 post-treatment. The secondary objectives are: 1.To assess the efficacy of ivermectin to reduce the SARS-CoV-2 viral load in the nasopharyngeal swab at day 7 post treatment.2.To assess the efficacy of ivermectin to improve symptom progression in treated patients.3.To assess the proportion of seroconversions in treated patients at day 21.4.To assess the safety of ivermectin at the proposed dose.5.To determine the magnitude of immune response against SARS-CoV-2.6.To assess the early kinetics of immunity against SARS-CoV-2. TRIAL DESIGN: SAINT is a single centre, double-blind, randomized, placebo-controlled, superiority trial with two parallel arms. Participants will be randomized to receive a single dose of 400 µg/kg ivermectin or placebo, and the number of patients in the treatment and placebo groups will be the same (1:1 ratio). PARTICIPANTS: The population for the study will be patients with a positive nasopharyngeal swab PCR test for SARS-CoV-2, with non-severe COVID-19 disease, and no risk factors for progression to severity. Vulnerable populations such as pregnant women, minors (i.e.; under 18 years old), and seniors (i.e.; over 60 years old) will be excluded. Inclusion criteria 1. Patients diagnosed with COVID-19 in the emergency room of the Clínica Universidad de Navarra (CUN) with a positive SARS-CoV-2 PCR. 2. Residents of the Pamplona basin ("Cuenca de Pamplona"). 3. The patient must be between the ages of 18 and 60 years of age. 4. Negative pregnancy test for women of child bearing age*. 5. The patient or his/her representative, has given informed consent to participate in the study. 6. The patient should, in the PI's opinion, be able to comply with all the requirements of the clinical trial (including home follow up during isolation). Exclusion criteria 1. Known history of ivermectin allergy. 2. Hypersensitivity to any component of ivermectin. 3. COVID-19 pneumonia. Diagnosed by the attending physician.Identified in a chest X-ray. 4. Fever or cough present for more than 48 hours. 5. Positive IgG against SARS-CoV-2 by rapid diagnostic test. 6. Age under 18 or over 60 years. 7. The following co-morbidities (or any other disease that might interfere with the study in the eyes of the PI): Immunosuppression.Chronic Obstructive Pulmonary Disease.Diabetes.Hypertension.Obesity.Acute or chronic renal failure.History of coronary disease.History of cerebrovascular disease.Current neoplasm. 8. Recent travel history to countries that are endemic for Loa loa (Angola, Cameroon, Central African Republic, Chad, Democratic Republic of Congo, Ethiopia, Equatorial, Guinea, Gabon, Republic of Congo, Nigeria and Sudan). 9. Current use of CYP 3A4 or P-gp inhibitor drugs such as quinidine, amiodarone, diltiazem, spironolactone, verapamil, clarithromycin, erythromycin, itraconazole, ketoconazole, cyclosporine, tacrolimus, indinavir, ritonavir or cobicistat. Use of critical CYP3A4 substrate drugs such as warfarin. *Women of child bearing age may participate if they use a safe contraceptive method for the entire period of the study and at least one month afterwards. A woman is considered to not have childbearing capacity if she is post-menopausal (minimum of 2 years without menstruation) or has undergone surgical sterilization (at least one month before the study). The trial is currently planned at a single center, Clínica Universidad de Navarra, in Navarra (Spain), and the immunology samples will be analyzed at the Barcelona Institute for Global Health (ISGlobal), in Barcelona (Spain). Participants will be recruited by the investigators at the emergency room and/or COVID-19 area of the CUN. They will remain in the trial for a period of 28 days at their homes since they will be patients with mild disease. In the interest of public health and to contain transmission of infection, follow-up visits will be conducted in the participant's home by a clinical trial team comprising nursing and medical members. Home visits will assess clinical and laboratory parameters of the patients. INTERVENTION AND COMPARATOR: Ivermectin will be administered to the treatment group at a 400µg/Kg dose (included in the EU approved label of Stromectol and Scabioral). The control group will receive placebo. There is no current data on the efficacy of ivermectin against the virus in vivo, therefore the use of placebo in the control group is ethically justified. MAIN OUTCOMES: Primary Proportion of patients with a positive SARS-CoV-2 PCR from a nasopharyngeal swab at day 7 post-treatment. Secondary 1.Mean viral load as determined by PCR cycle threshold (Ct) at baseline and on days 4, 7, 14, and 21.2.Proportion of patients with fever and cough at days 4, 7, 14, and 21 as well as proportion of patients progressing to severe disease or death during the trial.3.Proportion of patients with seroconversion at day 21.4.Proportion of drug-related adverse events during the trial.5.Median levels of IgG, IgM, IgA measured by Luminex, frequencies of innate and SARS-CoV-2-specific T cells assessed by flow cytometry, median levels of inflammatory and activation markers measured by Luminex and transcriptomics.6.Median kinetics of IgG, IgM, IgA levels during the trial, until day 28. RANDOMISATION: Eligible patients will be allocated in a 1:1 ratio using a randomization list generated by the trial statistician using blocks of four to ensure balance between the groups. A study identification code with the format "SAINT-##" (##: from 01 to 24) will be generated using a sequence of random numbers so that the randomization number does not match the subject identifier. The sequence and code used will be kept in an encrypted file accessible only to the trial statistician. A physical copy will be kept in a locked cabinet at the CUN, accessible only to the person administering the drug who will not enrol or attend to patient care. A separate set of 24 envelopes for emergency unblinding will be kept in the study file. BLINDING (MASKING): The clinical trial team and the patients will be blinded. The placebo will not be visibly identical, but it will be administered by staff not involved in the clinical care or participant follow up. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The sample size is 24 patients: 12 participants will be randomised to the treatment group and 12 participants to the control group. TRIAL STATUS: Current protocol version: 1.0 dated 16 of April 2020. Recruitment is envisioned to begin by May 14th and end by June 14th. TRIAL REGISTRATION: EudraCT number: 2020-001474-29, registered April 1st. Clinicaltrials.gov: submitted, pending number FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Subject(s)
Betacoronavirus , Coronavirus Infections/drug therapy , Ivermectin/therapeutic use , Pneumonia, Viral/drug therapy , Randomized Controlled Trials as Topic , Adolescent , Adult , COVID-19 , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Double-Blind Method , Evaluation Studies as Topic , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Pilot Projects , Pneumonia, Viral/prevention & control , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Time Factors , Viral Load , Young Adult , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL